

CT R1982A – Residential HVAC/DHW Performance and Potential Assessment

July 12, 2023

Kevin Price, Evergreen Economics

Objectives and Approach
Findings
Methods

Objectives & Approach

Note About Project Scope

- Metering installations began in late 2021 and finished early 2022.
- Capturing electricity use.
- Today's presentation covers heat pump water heater savings and mini-split effective full load hours for heating.
- Additional analysis in 2024 will cover central air and ground source heat pumps.
- Coordinating with the R2246 Residential Heat Pump Study for additional analysis.

Objectives of This First Report

Support PSD updates for heat pump-based HVAC and DHW equipment

- Ductless mini-split effective full load hours
- Heat pump water heater kWh savings

Understand differences in usage / savings by inland and coastal climate zones Assess how these technologies are used during extreme winter weather conditions

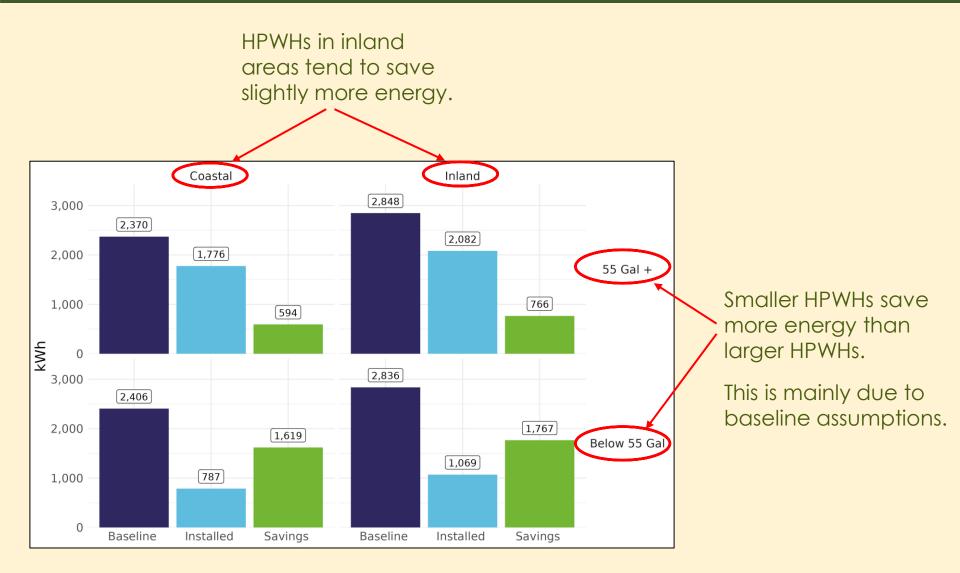
Energy Monitoring Approach

Monitored End Uses	Total			Included in Current Analysis*		
	Coastal	Inland	Overall	Coastal	Inland	Overall
HPWHs > 55 Gal	3	10	13	2	8	10
HPWHs 55 Gal and Below	27	53	80	19	45	64
Ductless Air Source Heat Pumps (only/primary heat source)	17	23	40	8	12	20
Ductless Air Source Heat Pumps (supplemental heat source)	24	23	47	16	20	36
Ducted Heat Pumps (ASHP and GSHP)	9	24	33	0	0	0

*End uses not included in the current analysis had insufficient months of data

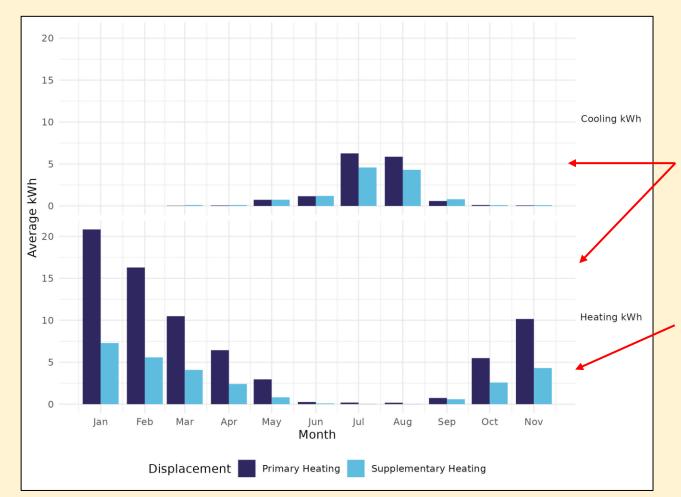
Findings

PSD Assumption Updates


	HPWH tank volume matters a lot (different baselines)					
Objective	Parameter	Updated Estimates	Existing PSD Estimates*			
Estimate HPWH energy savings (kWh)	kWh Savings for HPWHs > 55 Gal (n=10)	731 kWh (95% CI: 503-968)	197 kWh			
	kWh Savings for 55 Gal or Below (n=64)	1,723 kWh (95% CI: 1,554-1,901)	1,818 kWh			
Estimate ductless mini-split heating effective full load hours (EFLH _h) in full displacement, retrofit scenarios.	Ductless Heat Pump Heating EFLH (n=20)	1,099 (95% Cl: 836-1,350)	535**			

*PSD does not provide a confidence interval for these estimates.

**Existing PSD estimate does not differentiate between full or partial displacement scenarios; updated PSD estimate is for full displacement scenarios.



HPWH Savings by Tier and Climate Zone

Ductless Mini-Split Usage

Mini-splits use more electricity for heating than cooling.

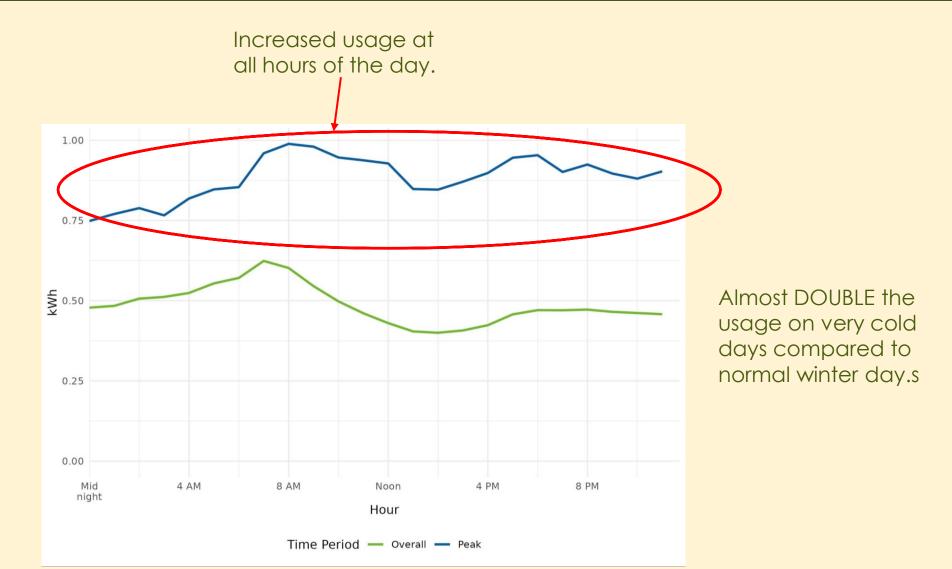
The primary heating systems use a lot more electricity for heating than the supplementary heating systems (as expected).

Ductless Mini-Split Heating EFLH

Important to differentiate primary vs supplemental in the PSD.

Displacement	Coastal (n=24)	Inland (n=32)	Average	Existing PSD Estimate
Only/Primary Heating System	1,124	1,081	1,099	
(n=20)	(95% CI: 796-1,400)	(95% CI: 758-1,464)	(95% CI: 863-1,350)	
Supplemental Heating System	555	773	676	
(n=36)	(95% CI: 287-857)	(95% CI: 459-1,110)	(95% CI: 459-911)	
Overall (n=56)	745 (95% CI: 508-989)	889 (95% CI: 652-1,139)	827 (95% CI: 654-1,008)	535*

*PSD does not provide a confidence interval for this estimate.

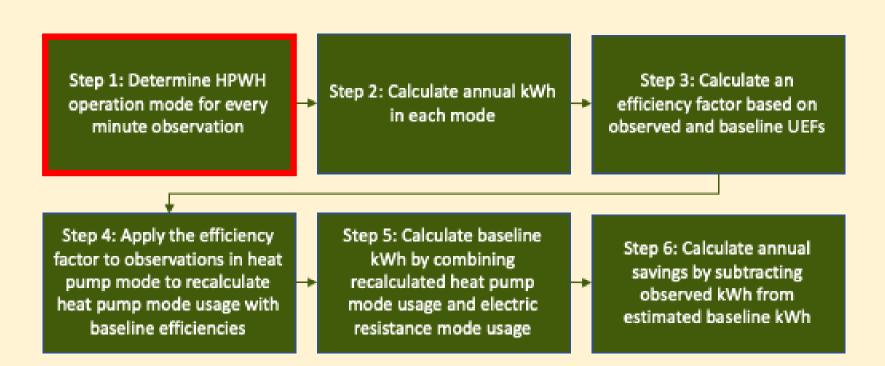

HPWH Usage on Very Cold Days

But mainly very similar load shapes during very cold days compared to other winter days.



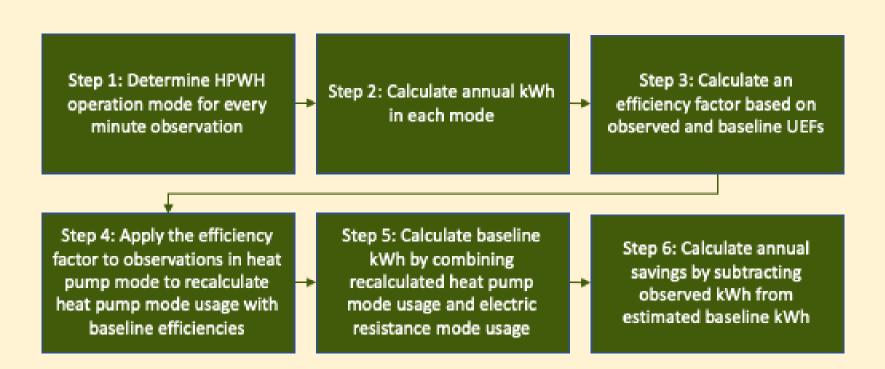
Ductless Mini-Split Usage on Very Cold Days

Central ASHP Usage on Very Cold Days


Time Period — Overall — Peak

Methods

HPWH Savings Method



Step 1. HPWH Operation Mode

HPWH Savings Method (step 2-6)

Ductless Mini-Split EFLH Method

• Electricity usage and manufacturer specs, utilizing method from the PSD.

Equation 4: Ductless Air Source Heat Pump Energy Usage Calculations $kWh \ Heating_{observed} = Heating \ Capacity_{BTUs} \times \left(\frac{1}{HSPF}\right) \times EFLH_h \times \frac{1 \ kW}{1,000 \ W}$ $kWh \ Cooling_{observed} = Cooling \ Capacity_{BTUs} \times \left(\frac{1}{SEER}\right) \times EFLH_c \times \frac{1 \ kW}{1,000 \ W}$

 <u>Heating</u> and <u>cooling</u> kWh were observed for each ductless mini-split, so we reordered the equations.

Ductless Mini-Split EFLH Method

- EFLH calculated by reordering the equations and inputting the metered kWh and HSPF or SEER.
- kWh values were normalized to typical weather (TMY3).

Equation 5: Calculation of Heating EFLH and Cooling EFLH

$$EFLH_{h} = \left(kWh \ Heating_{observed} \times 1,000 \frac{W}{kW} \times HSPF\right) \div Heating \ Capacity_{BTUs}$$
$$EFLH_{c} = \left(kWh \ Cooling_{observed} \times 1,000 \frac{W}{kW} \times SEER\right) \div Cooling \ Capacity_{BTUs}$$

Extreme Cold Day Usage Method

Step 1. Selected two very cold days in February to compare to the entire month.

Step 2. Calculated the weighted average load shapes based on average hourly kWh for each end use, once for the cold days and again for the entire month.

Kevin Price, Evergreen Economics price@evergreenecon.com