

Connecticut C2117 RCx Persistence Study

Final Results June 19, 2023

Introduction

Study Objectives

- Characterize the types of RCx measures and their savings installed in CT in past 5-10 years
- Develop effective life estimates for 4-6 RCx measures expected to be installed in CT over the next 5 years
- Recommend 3-5 RCx measures for field study to better estimate persistence

Background / Definitions

Retro-Commissioning (RCx)

- The systematic process that identifies and implements operational & maintenance and control strategy improvements to increase the energy performance of existing buildings.
- RCx targets malfunctioning and outdated control logic that causes a building's energy management system (EMS) to use more energy and prevent it from operating at peak performance.

RCx Persistence

- The median length of time that equipment control strategies are in place and operational
- Operational = functioning as originally intended and with energy savings ≥50% of the original savings

Key Recommendations Effective Useful Life (EUL)

- 1. Update the EUL values in the Program Savings Document (PSD) based on the findings from this study
 - a. 5 years for AHU scheduling and optimization
 - b. 7 years for all other non-lighting, non-refrigeration, and non-process retrocommissioning measures
- 2. Continue to use the existing EUL values in the 2022 PSD for lighting, refrigeration, and process equipment retro-commissioning measures.

Key Recommendations Effective Useful Life (EUL)

	Mean EUL from				
	Mean EUL from	Market Actor	2022 PSD	Recommended	PSD HVAC Controls Measures
	Literature Review	Interviews	EUL	Value	Covered
AHU Scheduling and Optimization	5.5	3.4	6/8*	5	Adjust scheduling, controls to eliminate simultaneous heating and cooling, and reset set-points
CAV to VAV AHU Conversion	5.8	7.7	8	7	Not included in PSD
HVAC Occupancy Sensors	6.3	9.0	8	7	Demand control ventilation, Modify HVAC controls
ChW Controls	5.3	9.8	8	7	Modify HVAC controls
Exhaust Fan Controls	7.3	9.8	8	7	Modify HVAC controls
Non-Specific HVAC RCx Measures	6.6	8.1	8	7	

*The PSD EUL values for adjust scheduling and reset set-points are 6 years while the EUL value for controls to eliminate simultaneous heating and cooling is 8 years.

Key Recommendations Guidance for Future Studies

- 3. To improve measure life estimates, conduct a field study to measure the persistence of common RCx measures
 - a. Develop RCx EUL values for broad measures where there may be a distinction in persistence

Specific Suggestions

- Use multiple modes, including:
 - In-person site visits to review measure trends or control logic in facilities' BAS, supplemented by functional testing
 - Virtual site visits with remote BAS access
 - Surveys
- Consider coordinating with other Northeast utilities or organizations
- Clearly define persistence and measure failure to maintain consistency across responses

Key Recommendations Increasing RCx Persistence

- 4. To remedy persistence issues, programs may consider implementing or continuing a variety of best practices, including:
 - a. Requiring RCx Service Providers (RSPs) to conduct follow-up visits to check for persistence issues
 - b. Conducting post-RCx training with building operations staff
 - c. Encouraging measures that are more difficult to change or overwrite when there are multiple options with similar savings

Methodology

Utility Data Review

- Analyzed program tracking data from 2015-2020
- Reviewed a random sample of 25 of 76 projects
- Identified most implemented measures/groups
- Grouped detailed measures of similar intent into common categories
 - E.g., "Implement an optimal start program for RTUs 1 & 2" became "Air Handling Unit Scheduling"
- Identified participating vendors and market actors

Priority measures

- AHU Scheduling and Optimization
- CAV to VAV AHU
 Conversion
- HVAC Occupancy Sensors
- ChW Controls
- Exhaust Fan Controls
- These measures represent 85% of electric (kWh) and 75% of natural gas (CCF) savings of sampled projects

Selected Measures

- CAV to VAV AHU Conversion Adding variable speed controls to allow central units to slow down and match the load, which saves both fan energy and heating and cooling energy
- AHU Scheduling and Optimization Turning off equipment during unoccupied times or periods with load loads. Optimizations include allowing the equipment to operate more efficiently at part-load conditions
- Occupancy Sensors Only providing ventilation, space conditioning, or lighting to occupied spaces

Selected Measures

- ChW Controls Changing how chillers are operated to allow them to most efficiently meet the load by slowing down pumps, properly staging equipment, or maximizing heat transfer in the system
- Exhaust Fan Controls Eliminates fan energy and space conditioning energy by avoiding exhausting conditioned air during unoccupied periods

Data Collection

- Three main sources:
 - CT Utility staff interviews
 - RCx Service providers (n=2) and Controls vendors and other Market Actors (n=7)
 - Extensive literature review (n=43 studies regional, national, utility evaluation & retention studies, conference papers)
- To inform on:
 - Past program offerings/ measures / context, future changes
 - Future measures, patterns
 - In-field information on failures, reasons, persistence factors (training, turnover, etc.), best methods for retention of measures & savings
 - Estimated measure lifetimes, field study needs
 - Covid and baseline issues

Results

Literature Review Findings on Lifetimes

RCy Measure	Number of	Minimum EUL (Years)	Maximum	Mean EUL (Vears)
AHU Scheduling and Optimization	5	1	9	5.5
CAV to VAV AHU Conversion	5	3	8.5	5.8
HVAC Occupancy Sensors	5	3	11	6.3
ChW Controls	5	2	8.5	5.3
Exhaust Fan Controls	5	3	12.5	7.3
Non-Specific RCx Measures	9	3	10	6.6

F

Market Actor Interview Findings

- EUL estimates varied by market actor AND average was higher than literature value.
 - May reflect difference in definition, or interviewed actors may be more engaged with customers, resulting in higher persistence
 - Evaluation team considered interview values as the high end of estimates

RCx Measure	Number of Respondents	Minimum EUL (Years)	Maximum EUL (Years)	Mean EUL (Years)
AHU Scheduling and Optimization	5	1	10	3.4
CAV to VAV AHU Conversion	3	5	10	7.7
HVAC Occupancy Sensors	5	5	10	9.0
ChW Controls	6	8	15	9.8
Exhaust Fan Controls	6	5	12	9.8

Recommended EUL Values

	Mean EUL from				
	Mean EUL from	Market Actor	2022 PSD	Recommended	PSD HVAC Controls Measures
	Literature Review	Interviews	EUL	Value	Covered
AHU Scheduling and Optimization	5.5	3.4	6/8*	5	Adjust scheduling, controls to eliminate simultaneous heating and cooling, and reset set-points
CAV to VAV AHU Conversion	5.8	7.7	8	7	Not included in PSD
HVAC Occupancy Sensors	6.3	9.0	8	7	Demand control ventilation, Modify HVAC controls
ChW Controls	5.3	9.8	8	7	Modify HVAC controls
Exhaust Fan Controls	7.3	9.8	8	7	Modify HVAC controls
Non-Specific HVAC RCx Measures	6.6	8.1	8	7	

*The PSD EUL values for adjust scheduling and reset set-points are 6 years while the EUL value for controls to eliminate simultaneous heating and cooling is 8 years.

Reasons for Poor RCx Persistence

AHU Scheduling and	Chilled Water Controls	CAV to VAV AHU	HVAC Occupancy Sensors	Exhaust Cans
 Actual occupancy is different than assumed occupancy Lack of operating training around scheduling Need to coordinate scheduling with other groups (e.g., Registrar's office in Higher Education) Building renovations Lack of proper maintenance 	 Failures due to programming changes User does not understand or trust new control strategy Equipment failure Actual occupancy is different than assumed occupancy Lack of proper maintenance 	 VFDs failing Volume control issues Poor sensor calibration Aggregation of issues with individual spaces Programming changes Drives locked at 100% Building renovations Poor sequencing 	 Overriding by facility staff due to poor understanding Bad application, location, or setup Equipment failure 	 Airflow sensors out of calibration Poor application/ building pressure issues Poor scheduling Equipment failures Changes to the space Lack of proper maintenance

poor maintenance, equipment failure, poor application/calibration/sequencing/ scheduling, renovations, and some equipment-specific items. 18

Best Practices to Increase RCx Persistence **Programmatic Remedies**

- Follow-up services: Require adequate RCx follow-up services
- Hold back \$: Consider holding back a portion of the incentives for a period of time after implementation and perform a persistence review
- **Required Training**: Require RCx providers to conduct post-RCx building operator training and create videos of training for later use
- Performance Tracking: Include performance tracking in the program

- **On-going Outreach**: Consider conducting ongoing outreach to RCx participants to understand changes to facility that may affect RCx savings
- **Difficult Measures**: Consider encouraging cost-effective measures that are difficult to change
- Continue to require RCx Providers to:
 - involve <u>facility operators</u> in the RCx process
 - work with <u>operations staff</u> to thoroughly document RCx measures and new operating procedures

Best Practices to Increase RCx Persistence Other Remedies

- Work Environment for Savings: Encourage RCx participants to create a work environment for building operations staff that support savings persistence
- Robust Measures: Promote RCx measures that are simple and robust
- Tech Transfer with staff turnover: When there is staff turnover, encourage sharing of knowledge from outgoing staff
- On-going Cx to Keep Performance: Encourage ongoing commissioning to identify non-functional parts of systems or setpoint changes

- Vendor Service Contracts: Encourage service contracts with equipment or controls vendors
- Operations Staff/Vendor Meetings: Promote quarterly or annual meetings between building operations staff and vendors
- Automation: Encourage building persistence into automation
- Fault detection diagnostics: Encourage use of fault detection diagnostics (FDD)

Future Studies

- Few rigorous RCx persistence studies small programs / technical
- Field study would improve EULs for CT, but:
 - Consider joint / regional study
 - Consider methods beyond traditional review of BAS measure trends or control logic: consider cost-effective alternatives
 - Virtual site visits with remote BAS access
 - Surveys

Questions?

Jake Millette Associate Director, Research & Evaluation jbmillette@michaelenergy.com

